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Today's computer assisted design (CAD) systems automate traditional ways of
working with tracing paper and pencil, but they cannot represent the rules and
relationships of a design. As hardware becomes faster and memory less
expensive, more sophisticated fundamental software technologies will be
adopted. This shift in the basis of CAD will provide powerful capabilities
and offer new ways to think about designing.

Recently parametric design, a technique for describing a large class of
designs with a small description in code, has become a focus of attention in
architectural computing. In parametric CAD systems, design features are
identified and keyed to a number of input variables. Changes in the input
values result in variations of the basic design. Based on conventional software
technologies, parametric design has been successfully applied in many design
domains including architecture and is supported by several commercial CAD
packages. A weakness of parametric techniques is the need to predetermine
which properties are input parameters to he varied and which are to he
derived.

Relational modeling is a simple and powerful extension of parametric
design that overcomes this weakness. By viewing relations as reversible
rather than one-way, any set of properties can be chosen as input parameters.
For example, a relational model that calculates the shadow length of a given
building can also be used to calculate the building height given a desired
shadow length. In exercising a relational model the designer is not limited to a
pre-selected set of input variables but can explore and experiment freely with
changes in all parts of the model.

Co is a relational modeling environment under development on the
Macintosh-11 computer, and Co-Draw, a prototype CAD program based on Co.
Co’s relational engine and object-oriented database provide a powerful basis
for
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modeling design relations. Co-Draw's interactive graphics offer a flexible
medium for design exploration. Co provides tools for viewing and editing
design models in various representations, including spreadsheet cards, tree and
graph structures, as well as plan and elevation graphics. Co"s concepts and
architecture are described and the implications for design education are
discussed.

Today's Computer Assisted Design

Computer tools have only begun to support architectural designing from
schematic design through construction. Good at drafting and rendering tasks,
they allow users to construct and edit drawings by using primitive geometric
objects and parts from libraries. Current technology permits designers to work
with layers, and to zoom in and out while working on a drawing. Combined
with three-dimensional construction and viewing, these capabilities comprise
the repertoire of most commercial packages on the architectural CAD market
today.

Although today's CAD tools automate many aspects of drafting, they do
not let us record the reasons for the decisions we make-the rules and
relationships that govern the design. A drawing is inherently static; a design
is dynamic. Drafting and rendering, while essential to architectural design,
represent only the "external" aspects of designing. A complex "internal"
process of reasoning and judgement lies behind every design decision. Even such
a simple change as moving a window can cause far-reaching effects in a design.
A drawing cannot convey these design dependencies; therefore we keep them in
our head. It would be a significant advance if computer-based design tools
would enable its to record the design relationships we intend, along with the
specific decisions that accomplish these intentions.

Need For Smarter Drafting Tools

Here are three examples that illustrate the limitation of today's computer-
based drafting tools: It is easy to draw two circles and make a line segment
tangent to both. But once the drawing is made we cannot move or resize one of
the circles and expect the line segment to adjust to maintain the tangency.
Rather, we must repeat the "make tangent" operation after moving or resizing
one of the circles. Likewise, in most CAD programs it is easy to select two
elements and align them, for example, along their top edges. But the alignment
will not be preserved if one of the elements is subsequently moved or resized. A
final example is grid-gravity in which elements snap to center (or align) on
grid lines. We might use this feature to locate columns at crossings in a
structural grid. In today's drafting programs when we change the grid
dimensions, grid



CAAD futures Digital Proceedings 1989 125

lines move while elements remain as originally positioned. If elements "knew"
to move with the grid then columns would remain located at grid crossings as
intended.

These examples make clear the distinction between a drafting operation
and a designrelation. Of course, sometimes we only want to perform a one-time
operation. But often we would like to declare the tangency, the alignment, or
the grid-gravity as a relation, to he remembered and maintained dynamically
by the computer as we edit the design: moving, resizing, and rotating elements.*

Parametric Design

Parametric design tools? allow the architect to describe a family of designs
which vary according to certain key design variables, or parameters. A simple
example is a parametric model for a stair, with height between floors and
riser height as inputs. We can make a "dataflow diagram" of the model with
input parameters on the left and output parameters on the right. [Figure 1].

A standard formula (R1) assures a comfortable stair. Dividing the height
between floors by the riser-height gives the number of risers (R2) , from which
the total stair run can be computed (R3). The parametric model is really a
procedure for designing-in this case-a stair.

A parametric model is appropriate for routine design, where we want to
rapidly generate design alternatives according to a formula worked out in
advance. But for conceptual design, which is characterized by interactive
exploration, parametric modeling is less useful because in conceptual design we
don't want to determine in advance which properties of a design we will use as
input parameters. Suppose we need to design a stair with a given tread depth,
total run, or number of steps. Our original model won't serve; its input
parameters are riser-height and height between floors. We can work around
this problem by building several parametric models expressing the same stair
relationships, differing only in which properties are input parameters. But
there are simpler and more efficient solutions.

Relational Modeling and Constraints

What we need (and what is lacking in parametric design) is a single model
that can be used in several different ways, depending on which properties are
to be set as inputs and which are to be calculated as outputs. This would allow
us to retain desired flexibility in decision-making for conceptual design. The
model would define only the relations between the stair's properties (and not
which properties are to "drive" the model); at insertion time we must set a
sufficient number of parameters to specify the new stair instance. (Our diagram
for the relational stair would look like figure 1 without the arrows indicating
the direction of data-flow.) We would use the same model to make a stair
using
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riser-fetght @ tread-depth

@ tofal-run

floor-floor-height @ number-of-risers
{R1}): b3 — (2 F riser-height) = tread-depth
{R2}: Jloor-floor-height / riser-height = number-of-risers

(R3}: (nwmber-of-risers — 1) * tread-depth = toral-run

Figure 1 Dataflow diagram of a parametric stair model

any of the variables: floor height, riser height, tread width, number of steps,
total run, or stair slope, as input parameters. This key idea, allowing any of
the variable properties of a design to become input parameters, distinguishes
relational modeling from parametric design.

Relational modeling, also called "variational® CAD, uses a software
technology called "constraint-based programming"[6], first explored in
Sutherland's famous Sketchpad program[14]. Research [2, 7, 8, 12, 13) has
developed the concept to the point where mechanical engineering (MCAE)
applications?® software based on relational modeling has begun to appear.

In a relational model, each design object is described by variables and
relations, Variables represent the objects properties, and relations, its
behavior. Variables and relations are connected in a network similar to the
diagram of a parametric model shown in figure 1. Unlike a parametric model,
however, inputs and outputs are not determined when the model is defined,
and hence the direction of data-flow through the network depends on the
sequence in which variable values are supplied. The designer may freely set
and change values of design variables in any order, as well as to improve or
modify the model by adding and deleting relations at any time throughout the
design process. Combined with object-oriented database and programming
techniques, relational modeling offers a powerful and flexible medium for
building computer assisted design tools.

Co-Draw

Co-Draw is a prototype for demonstrating relational modeling as a basis for
computer-assisted architectural design. However relational modeling
techniques are not limited to graphics-they can be employed in a wide range of
domains including engineering calculations, scheduling and facilities
management, and financial planning. This section describes an interactive
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graphics environment, Co-Draw, built using the Co relational modeling
language. Figure 2 shows Co-Draw's user-interface. Drawing takes place in one
or more Work Sheet windows. Command and relations menus are provided,
along with a click-and-drag interface for moving and resizing elements. The
part-structure, or assembly model of the design is viewed and edited in a Part
Graph window.

Using the command menu we enter primitive graphic elements. points,
lines, line-segments, rectangles, circles, arcs, and poly-lines. (Grids are defined
and deployed using a separate Grid Manager module). The command menu also
provides facilities for grouping, rotating, and inspecting elements. The
relations menu offers predefined geometric relations for graphic elements
including alignments and abutments, centering and edge-offsets, and dimension
ratios.

Co-Draw supports relations as discussed above. If we apply "align tops" to
two elements in the Work Sheet, Co-Draw maintains the relation: when we
move one element, the other moves to keep the tops aligned. The relation is
displayed graphically (as a red line across the element tops) but can be hidden
on request. If we draw two circles and a line-segment, then apply the "tangent"

File Edit Ewal Tools Windows Special Graphs

[
Relations
Command Menu

Menu
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Color J J-
Palelte

Figure 2 the Co user interface

|

Figure 3 Co maintains alignments and abutments
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relation between each circle and the segment, Co maintains the relation
dynamically as we move and resize the circles. And if we fix elements to a
grid, they remain in their original relationship to the grid (centered, aligned,
etc.) as we change the grid-unit dimensions.

Example: abutments and alignments

A brief example shows how Co-Draw maintains geometric relations as we
apply them from the menu. First we draw three rectangles (A). Next we
establish relations to keep the rectangles abutting horizontally (B) but which
leave them free to move vertically (C). Adding top alignment relations fixes
the rectangles' relative positions (D). But if we allow the middle rectangle to
vary in size then dragging the end rectangles apart will stretch the middle one
to satisfy the abutment relations (E).

Example: a simple shed design

We might construct the simple shed design shown in figure 4, entering graphic
primitives and applying relations from the menus. We draw a rectangle for the
slab first and then two rectangles for walls, and enter vertical abutments (RI,
R2) to fasten then' to the slab. As we apply the relations, the elements move
and resize themselves. We fix offset distances between the walls and the edge
of the slab (R3, R4). Next, we enter a sloped line for the roof, and a "fixed
slope"” relation (R5) The roof and walls are not connected, so we add beams
resting on top (R6) of each wall, supporting (R7) the roof and centered (R8) on
the wall. Finally we add an overhang relation (R9) to keep the roof extending
past the slab. Because of these relations, the shed design will "behave" in
certain ways as we change dimensions and positions of its parts. If we raise the
roof, the walls will become taller so as to maintain relations R6 and R7. Or, if
we extend the slab towards the left, the shorter (leftmost) wall moves with it,
to maintain the position relation R3. In order to maintain the roof's fixed slope

‘ RS
|
| Rg
RI K2

Figure 4 A simple shed design Figure 5 Adding a loft
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R5 and support relations R6 and R7, the wall height must decrease, and the
roof extends to maintain the overhang relation R9.

We can continue to add elements and relations to the design. For example,
we can add minimum and maximum height constraints on the walls. We might
add a loft whose interior extension is related to the height from its top to the
roof (figure 5).

In this simple example we began with a simple drawing and, by applying
relations between its parts, we built into it design behavior. Through applying
the relations, lines and rectangles take on meaning; they begin to behave like
the building elements that we intend them to represent. This process of
assignhing meaning and behavior to lines and symbols is essential to the use of
drawings in design and is by no means a new concept introduced with computers.
Whenever we communicate by drawing we rely on a shared understanding of
the marks we make on paper, and learning to operate with this code is central
to design education.

Notice that in constructing this simple model we had no need to write,
compile, link, or debug any computer code; yet we have programmed the
behavior of our shed design. We have proceeded entirely by entering graphic
primitives and applying relations from the Co-Draw menus. Code describing
the design behavior was generated automatically (and we can now view and
edit it ) but we constructed the model by adding relations interactively to the
drawing.

The Co-Relational Modeling Language

Graphic elements and relations in Co-Draw are defined in the Co relational
modeling language. The language integrates an object-oriented database and a
"reversing" spreadsheet The object-oriented database organizes element
descriptions in a hierarchic class structure; individuals inherit default
properties and behavior from class definitions. The "reversing" spreadsheet
provides two-way calculation; we can work forward from design decisions to
calculate performance, or backward from performance specifications to
determine appropriate settings of design variables. Special "card" and
"graph" windows for viewing the data-structures provide an interactive user-
interface for programming. We can set and modify behavior of design elements
as we explore consequences of decisions. This section introduces principal
features of this language with simple examples.

Classes and Individuals

Every Co element is either a class or an individual. A class defines variables
(properties) and relations (behavior) for all its members. A tree-like taxonomy
organizes class definitions with specific information added in subclasses,
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general information stored at higher levels. For example, the class "unit-
masonry" [Figure 61 describes general characteristics inherited by subclasses
"brick" and "concrete-block," each of which specifies a material value
inherited by its subclasses which specify dimensions, color, glazing surfaces,
etc. The Library Graph window displays the structure of element classes, and
we can make new definitions in this structure interactively. For example, we
could add a new "shed" class based on the example above.

At the lowest level of this "inheritance hierarchy", every individual
element is a member of one or more classes. Individuals add specific
information (such as position) to the defaultvalues and relations they inherit
from their classes. An individual may also override default values from its
classes, which makes it an exception [ii

Every individual is also a part, either of some other individual, or of a top
superpart element called "World". A Part Graph window displays the
hierarchy of part-whole relations among individuals in the design (see figure
2). The part-structure of the design is retained when we open a configuration to
edit a part; when we finish editing the part we can simply close the group
(unlike with MacDraw, we do not need to "group" again). The part structure
can also be edited directly in the graph window by adding and deleting links.

Spreadsheet Cards

Variables and relations for each individual and class are viewed and edited
using special windows called "spreadsheet cards". These cards enable us to
interactively extend Co's capabilities by defining new classes of elements and
relations and by modifying and adapting built-in definitions. Variables Cards
(see figure 7) display the variables that define elements' properties:
coordinates, dimensions, color, parts and superparts. We can fix and unfix
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Figure 6 Library Graph
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Figure 7 Variables Card for a Circle individual
showing fixed Radius and calculated Area

(retract) values, add new variables and inquire about chains of inference that
lead to derived values. The relations that define elements' behavior are
viewed and edited in Relations Cards. We can add and delete relations and
inquire how a relation was derived. We can control the display to show only
relations defined for a particular individual or to include all relations
inherited from superclasses.

Example: Adding Area Calculation to Circles
A Circle is defined in Co as a relational object with three variables: CX and Ct
defining its center coordinates, and RADIUS. We can extend this definition to
include an AREA calculation. In the Relations Card for the class CIRCLE, we
enter:

AREA = 3.14159 * RADIUS2
Immediately all new and existing Circle individuals will calculate their area
using this formula inherited from the CIRCLE class. Co's spreadsheet is
"reversing"; therefore the area relation can be used "backwards" to compute
RADIUS as a function of AREA. If we enter a circle into the Work Sheet and
view its Variables Card [Figure 7] we see that its RADIUS is fixed (indicated
by underlined typeface) and AREA is calculated. If we change the value of
CIRC-I's AREA, Co recomputes RADIUS, switching it from "fixed" to
"calculated" status, and updates the graphic view in the Work Sheet.

Example: Defining Element Sub-Classes

We can define new element types that inherit from the class RECTANGLE but
which have additional properties or behavior. For example, we can make
subclasses with default colors (BLUE-RECTANGLE) or dimensions (BIG-
RECTANGLE, SMALL-RECTANGLE). We can define a SQUARE subclass with
the additional relation HEIGHT = WIDTH. Or we can define a class of
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elements which automatically calculate their cost based on size. We define
the class MASONRY-WALL as a rectangle with the relation: COST =
LINEAR-COST * LENGTH. Next we fix a default LINEAR-COST value in the
MASONRY-WALL class. As we enter individual MASONRY-WALL instances
(each with a different LENGTH) into a design, each individual computes its
COST, multiplying the inherited LINEAR-COST by its own LENGTH. When
we change the lengths of individual MASONRY-WALLS, their COST values
change dynamically®. If we change LINEAR-COST in the MASONRY-WALL
class, individual COST values also change. We can further specialize
MASONRY-WALL, making subclasses BRICK-WALL and
CONCRETE-WALL, and fix different default LINEAR-COST values for each.

This example suggests how we could program Co-Draw to display
constantly updated totals for area, number of window, costs, etc. This ability to
calculate on-the-fly and display running totals while designing offers a
significant improvement over current schemes, which require the designer to
leave the drawing environment and run the design through a separate costing
module.

Relations, not just equations

Although many important relations can be conveyed by algebraic equations,
many others cannot. Inequality relations and tolerances, for example, are
needed to represent minimum and maximum dimensions, placement of elements
in zones, and other concepts in architectural and engineering design. Co
interprets inequality relations as interval equations, and Co's arithmetic
routines support calculations with interval or range values. By introducing the
symbolic value (infinity) as a special number, Co represents the inequality X~
20 as an interval equation X = [- 20] and the relation 8 " WIDTH " 12 becomes
the interval equation WIDTH = [8 121. If this value is multiplied by HEIGHT
=[6 101, the result is an AREA = [48 1201, or 48~ AREA " 120.

Selecting elements from a limited set is another case where Co's support for
relations goes beyond simple algebra. Building components are made certain
sizes and design relations that specify dimensions must recognize this. It is
easy in Co to define tables and catalogs of components and to index them
relationally by size, cost, and other properties.

Finally, Co provides the ability to define new relations that apply to
objects, not only to numbers. For example, although the internal definitions of
built-in alignments and abutments relate edge coordinate values, alignments
and abutments are relations between elements. In turn, abutments, alignments,
and offsets can be combined into higher-level spatial relations. At each level
the new relations hide their detailed internal definition with an abstraction
barrier, so we can work at a level appropriate to our needs.
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Applications

Laying out horizontal curves in road design is a process of placing control points
connected by line segments, then inscribing curves in the angles between
segments. The curves must be tangent to the line segments and road safety
standards dictate additional relationships between radius of curvature, safe
travel speed, and lengths of the straight segments. Once an initial road layout
is made, the designer edits the layout by moving control points, changing
curvatures, or by adding and deleting control points (and thus curves)13].

In a space planning problem, a fixed program of functions is placed into a
designated site, subject to certain dimensional and adjacency requirements
among functions and areas of the site. For example, an entrance area has
minimum and maximum dimensions and must be adjacent to the building
facade. Once functions are located in the site, the designer edits the layout by
adjusting room dimensions. As dimensional adjustments are made, neighboring
rooms stretch and squeeze to avoid gaps or overlaps.

In structural design, a beam's cross-sectional dimensions, span, and load are
related. If cross-section and span are given, the safe load can be determined,;
conversely, if load and span are given, the required cross-section can be
derived. When the beam is placed in a building, its dimensions are related to
other building components. Its span is related to column and bearing wall
locations and its depth is related to storey-height. As bearing walls are moved
in plan, spans may change, requiring increased beam-depths. In turn this may
lower the clear-space between floor and ceiling, or raise the overall building
height.

A final application is the coordination of subsystems [5]. Each system-
foundation walls, structural steel, partitions, piping, electricity, HVAC-has
its own selection of components and rules for assembly. Additionally, certain
position relations must he maintained between elements of different systems.
Subsystem placement rules can be coordinated using a grid system.

Implications for Design Education
The introduction of computers into the design curriculum offers exciting
opportunities to reflect on architectural knowledge and the process of design.
For many, learning to operate available software for drafting, solid-modeling,
and rendering in a studio setting is a first step to understanding both the
potential and limitations of today's computer tools in the profession. However
if this is the full extent of engagement then we have failed to take full
advantage of our opportunities.

An effective approach to employing computers in teaching mathematics
asks students to write programs to carry out the algorithms they are studying.
For example, in instructing the computer to test whether a given number is
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prime, or to find a common denominator of two fractions, the student is forced to
think carefully about how to solve the problem. The computer provides a
medium for expressing implicit "how to" knowledge in an explicit and testable
form.

A similar approach can be applied in design education. Architects
however, unlike mathematicians, are unaccustomed to expressing knowledge in
concrete, algorithmic terms. Thus the student becomes a researcher engaged in
an effort to capture and convey architectural knowledge to the computer,
creating an epistemology of design. As a first step in this direction, students
learn to write macros and programs to extend built-in CAD features and to
automate frequently repeated actions. Constructing shape grammars and
knowledge-bases for expert systems should also be classified under this rubric,
as students reflect on and express architectural knowledge in a computer code
where it can be examined and exercised by others.

A significant obstacle to this approach in design education is the lack of an
appropriate language. Traditional computer languages such as BASIC and
Pascal were developed for scientific programming and are unsuited to the
expression and exploration of design knowledge. The control and data
structures are restrictive and the syntax is clumsy. The programming language
C and its object-oriented extensions, though popular among programmers, will
not serve designers directly, nor even will symbolic languages like Lisp, Prolog,
and Smalltalk.

This paper has described the Co relational modeling language and argued
the benefits of the relational approach to computer assisted design in
architecture. We need interactive computer languages in which we can easily
express architectural design concepts. The task of inventing these languages is
not easy, for it requires an explicitness that architectural design has hardly
known. But if such a thing can be, then architects must participate in the
inventing. That should be one goal of integrating computers in design education.
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Notes

This project began with my Ph.D. dissertation at M.I.T, where S. Ervin and A. Fleisher
collaborated on previous related research[3,4]. The development team for this project
included C. Fry, J. Habraken, and M. Ruano. | am indebted to A. Dula, J. Nilsson, M. Ruano,
and H. Saved for comments on earlier drafts of this paper. Support from Shimizu
Construction Corporation, Coral Software Inc. and Apple Computer's Cambridge
Advanced Technology Group is gratefully acknowledged.

! We sometimes annotate design drawings with instructions like "align these walls" or
"keep 6' minimum clearance". These instructions are more effective at conveying design
intent than measured dimensions, with which a subsequent change may inadvertently
cause a desired relationship to he lost.

2 PASCAL programs to implement parametric design techniques are discussed in Mitchell et
at. [91 Parametric design templates can also be constructed using macro or programming
language facilities of conventional drafting programs. Recently, commercial packages with
parametric capabilities have appeared: on the high-end are ICAD's Design Language
product and Wisdom Systems "Concept Modeller", which require a designer to write code
to describe a family of designs. On the low end, the "Synthesis" package provides
parametric design capabilities to AutoCad.

® Perhaps the best known is Cognition's Mechanical Advantage program. Other products
that employ relational modeling techniques are described in a recent article in Computer

Graphics World !

* The present implementation of the Co language is busy, computing all values as soon as
possible. A previous implementation was lazy, computing values only on demand.



