This paper re-examines the interweaving method to demonstrate how architectural computation can reinterpret the advantages of this traditional crafting techniques for its geometrical compatibility and rule generativity. Firstly, the technique analyzes and reconfigures load distribution of a traditional interwoven surface to mimic its structural principle. Secondly, from this structural reconfiguration, the study applies parametric shape grammar to define interweaving rules. The rules generate various patterns with rigid local materials that fit the size of human hand. The experiment in this study shows that interweaving grammar can generate ornamental-structural components with three different load distributions, three different segmented materials and in three different spatial dimensions (point, line and plane).