Rigidly foldable shells offer tremendous potential for developing kinetic architectural structures. However, the added element of motion poses new design challenges. Initially, sketchy shell geometry is constructed to reflect the intended form. Further steps involve assuring an error free folding within a range that satisfies desired functional requirements. The kinematics of a parallel topology of the shell's geometry is difficult to express algorithmically what prevents from developing of automated adjustment tools based on computational methods. The geometry can be adjusted manually based on intuitive observations, however the process is tedious, time consuming and unpredictable. This paper develops automated adjustment tools based on the intuitive approach of a human designer. The study applies the fuzzy logic formalism as a computational interface between human approach and structured adjustments to the geometry. The advantages of fuzzy logic stem from its natural ability to represent human knowledge and effectiveness in reconciling ambiguities, uncertainties and redundancies that the intuitive human approach brings along. The development steps of fuzzy logic based algorithm are presented. Performed evaluation tests and the results are discussed.