We present a design-computation method of design-to-production automation and optimization in digital fabrication; an algorithmic process minimizing material use, reducing fabrication time and improving production costs of complex architectural form. Our system compacts structural elements of variable dimensions within fixed-size sheets of stock material, revisiting a classical challenge known as the two-dimensional bin-packing problem. We demonstrate improvements in performance using our heuristic metric, an approach with potential for a wider range of architectural and engineering design-built digital fabrication applications, and discuss the challenges of constructing free-form design efficiently using operational research methodologies.