This paper celebrates the successful outcome of a trial of an innovative multi-platform distributed design decision support system in which the shared design environment exists within the virtual world. The outcome is the result of a sustained three-year research and development effort, within an internationally recognised research group. The project set itself a number of ambitious targets within the broad spectrum of distributed design decision support, viz: • A multi-platform environment: the trial demonstrates inter-operability of different machine platforms - from a home PC to an international standard Virtual Reality Centre. • A distributed environment: the trial demonstrates the high level of understanding amongst the design team separated by time and space. • An ability to propose, discuss and agree upon, design decision from within the virtual world. Hitherto, virtual environments were viewing galleries, designers had to leave them to effect design changes in a conventional CAD package. The trial described in the paper amply demonstrates the potential to design, collaboratively and, in distributed mode, from within the virtual world. The two ideas upon which the system (known as JCAD-VR) is built are: • That all the users present in the virtual world have to be able to share the same virtual environment in a “transparent fashioni, • The user interface, instead of the traditional menu/windows based layout, is part of the virtual world itself. Any element of the interface becomes an object belonging to the 3D world and therefore it is treated as any other object. Each element of the interface can then be moved or scaled according to the useris needs. The entire project is based on client-server architecture where every user logs into a virtual world and starts sharing design tasks with other users. The authors propose to present a video which demonstrates the positive outcome of the trials to date. More importantly, perhaps, the authors will put the achievements of the R+D into the context of past aspirations and developments in the subject area and, most importantly of all, suggest how these modest achievements will impact on the next decade of increasingly rapid R+D.