Emergent design tools, with enhanced modelling and parametric manipulation capabilities, are encouraging the exploration of new geometric typologies in the field of architecture. Designers are not only finding more opportunities to work with geometries of higher complexities but are also becoming able to manipulate their designs with simple formulations. After a decade of familiarity with free form modelling tools, architects must now become more aware of the critical relationship between design and construction. When a design is performed without taking the constraints of construction into account the inefficient method of geometric post-rationalization becomes necessary. Thus, the knowledge of the rationale should be applied from the very beginning of the design processes, and digital models should be informed and controlled while being developed. This paper will present analytical strategies and methods for working with nonstandard geometries in a geometrically and parametrically controlled environment. Each method is supported with custom scripts which run in both parametric and non-parametric computer aided design (CAD) platforms. Each script and method is manipulated for the next project and the computational tools created build up a library of surface generation, manipulation, and subdivision tools. This library later becomes a source for office-wide use of surface manipulation.