Through the use of design for manufacturing (DfM) method and looking at the relations between its potential application in architectural production and its implementation using digital manufacturing technologies, we analyze building construction processes and explore, in more detail curved surface fabrication using two dimensional cutting and three dimensional milling processes. Afterwards a DfM model for curved surfaces fabrication using three-axis computer numerical control (CNC) router is proposed. The proposed DfM model relies fundamentally in two supporting factors, the implementation of design heuristics that integrates production knowledge and the availability of some design related to production evaluation metrics. Subsequently, we test and refine the model using structured design experiences. This was accomplished by capturing new design heuristics and detecting useful evaluation metrics for production. In the final part of the research, a refined DfM model was tested in a component design case study. The case study is based on producing a curved surface module on wood for an existing proprietary component based wall system. As a summary, we conceptualize from this top-down development approach to create a design for manufacturing model that integrates design and construction in architecture, based on three possible applications fields: Design processes improvement, building production process improvement, CAD-CAM tools development. Our purpose is to provide better foundational constructs and approaches for integrating design with manufacturing in architecture.